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THEORETICAL ELASTIC STRESS DISTRIBUTIONS IN
CASSINIAN DOMES

By David A. Spera and Robert H. Johns

SUMMARY /g2 5%

The geometric properties and elastic stress distributions in a family of
domes with constant thickness, temperature, internal pressure, and material prop-
erties are investigated, and results are presented in a form sultable for prelim-
inary design. The governing differential equations are solved by a finite-
difference technique, which is presented in detalled algebralc form for the
shells investigated and in matrix form for general shells of revolution.

Meridians of the domes considered are modified curves of Cassini and contain
two parameters that permit a wide range of shapes. Variations in dome curvature,
height, area, and volume with these two parameters are calculated. Membrane
stress distributions and significant bending stresses are given for a class of
domes that close cylinders of equal thickness and have zero curvature at the
junction section. Complete stress distributions are found for several dome geom-
etries. In addition, a dome was fabricated and tested, and good agreement be-
tween experimental and theoretical results was obtained. By utilizing the shape
flexibility of Cassinian domes, discontinuity stresses may be minimized through
judicious selection of shape parameters and wall thickness.

INTRODUCTION

As part of a general program to determine stresses in thin-walled shells of
revolution used in aircraft, missile, and space vehicle structures, a variety of
cylinder closures has been investigated (ref. 1). In general, discontinuity
stresses in these shells were significant. The present work is an investigation
of a famlly of domes that show promise of reducing discontinuity effects.

Fligge (refs. 2 and 3) has proposed a series of domes generated by modified
curves of Cassini. These modified curves contain two parameters that permit a
wide variation in curvature throughout their lengths. ZEllipses are included as
special cases. Because domes generated by these curves, hereinafter called
Cassinian domes, have a wlde range of edge deformations under load, including
those of equal thickness membrane cylinders, they were selected for this investi-
gation.

References 2 and 3 present a membrane analysis of the Cassinian dome, which
was expanded upon in reference 4 to include a more detailed description of the



two~-parameter characteristics of the shells. In these references, free-edge de-
flection is assumed to depend upon the meridional curvature only at the dome
boundary, and free-edge rotation is assumed to be zero. Although both these as-
sumptions were consistent with the membrane analysis used, they were approxima-
tions that did not necessarily predict edge deformations with sufficient accu-
racy, as noted in references 5 and 6. Bending moments also exist at the apex of
the dome, which may be the critical region for design. With the limitations of
the membrane analysis in mind, further study including bending effects seemed
necessary for a complete understanding of Cassinian domes.

In this investigation, stresses are computed using the equations proposed
in reference 7 for a general thin-walled shell of revolution. A finite-
difference solution of these equations is given in reference 8 in matrix notation
and is presented here in algebraic form for shells with constant thickness, tem-
perature, Internal pressure, and material properties. Reference 9 presents addi-
tional details of this method @f analysis; preliminary results of the work herein
are presented in reference 10.

The scope of this investigation includes calculation of detailed geometric
properties of Cassinian domes, membrane and slgnificant principal and effective
stresses in a family of domes attached to cylinders of equal wall thickness, and
complete stress distributions for a selected dome. The family of domes has zero
curvature at its junction section. Thus, any abrupt change in curvature between
dome and cylinder is eliminated, and discontinuity stresses are greatly reduced.
In addition to this theoretical work, a small-scale Cassinian dome with an inte-
grally machined section of cylinder was tested, and the results are included in
reference 10 and in this report.

SYMBOLS
A,B,F,J,P,R matrices, 2 X 2
a radius of cylinder, in.
C extensional rigidity, Eh, 1b/in.
D flexural rigidity, BhS/12(1 - v2), 1b-in.
E modulus of elasticity, psi
g,k,q,t,y matrices, 2 X 1
H radial stress resultant, lb/in.
h thickness of shell wall, in.
3' dome station nearest to junction
3 boundary station
M couple, lb-in./in.
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Subscripts:

e

Cassinian dome shape parameters

tangential stress resultant, lb/in.

internal pressure, lb/sq in.

transverse stress resultant, 1b/in.

radial coordinate to mlddle surface, in.
surface area of dome, sq in.

meridional coordinate along middle surface, in.
radial deflection, in.

axial stress resultant, lb/in.

volume of dome, cu in.

axial coordinates to middle surface, in. (fig. 1)
reference length, in.

meridional rotation, radians

coefficients

arc length from station 3' to junction, in.
normal strain, in./in.

constants

load terms, (in.-1b)1/2

Poisson's ratio

s/

curvature, (in.)"1

normal stress, psi

meridional slope, radians

effective



H radial

is inner surface

J station along shell meridian
max maximum

min minimum

o apex, r = 0

oS outer surface

v axial

6 circumferential

E meridional

Superscripts:

Junction

( )' differentiation with respect to ¢

GEQMETRY

The basic equation of the Cassinian dome meridian (ref. 4 and fig. 1) is
2
(r2 + n2x2)° + 2ma2(r2 - n2x2) = a%(1 + 2m) (1)

Solving equation (l) for x and for r, explicitly, gives

‘/m - (g)z 4 ‘/(1 + m)? - @n(g-)z (22)

X =

S

and

r=a J—m - nz(-g-)z + J(l + m)2 + 4zmn2<§-)2 (2b)

Dome height and meridional curvatures at junction and apex are, respectively,

%o = = /T + 2m (3a)

n



2 2 2 -
5, = dx _(4cr _ntl-m (3b)
E 3/2 2 a 1+m
[ 2 ax“/, o
- (2) :
a,0
and
_ d2x
dr? a%x 1 1+ 3m
Po = 3/2 R ) = T +m (3c)
[ (dx>é] dr 0,x an -/1 + 2m
1+ (= o
dr
0,x4

It can be seen from equations (Sb) and (Sc) that m 1is limited to the range -1/5
to 1 for domes of positive Gaussian curvature. If m = O, equation (1) describes
a family of ellipses. Figure Z(a) shows several Cassinian dome meridians with
various combinations of shape parameters m and n. Figures Z(b) to (e) contain
additional details of the geometry of Cassinian domes and, with figure Z(a), are
treated further in RESULTS AND DISCUSSION.

ANATYTTCAL PROCEDURE

A1l stress resultants and moments in the dome may be found from the quanti-
ties H and B (fig. 1). Differential equations appropriate to thin elastic
shells have been presented by Reissner (ref. 7) and are given here in modified
notation without proof:

(rH)" + D(rH)" + 6(rH) + A8

1}

Ay

and (4)

il

B + TR + Of + ¥(rH) = A,

The primes denote differentiation with respect to the nondimensional meridional
coordinate E.

For a thin elastic shell with constant wall thickness, internal pressure,
and material properties, the coefficients in equations (4) are



A = -afp Fn
T=T
2 (s)
o = a2 [(Lr_@) ¥ vpgpa} e
2
y o223 - v7) 2
Eh3 e
2
A = - E%— r cos @[épe + (2 - V)Dg]
5 2
Ao = 8(1 ~ ve) Rég-r cos @
Eh

-

Appendixes A, B, and C present expressions for these coefficients for a gen-
eral shell of revolution, a numerical solution of equations (4), and methods for
calculating stresses and strains from (rH) and B. An electronic computer was
used to carry out this numerical solution.

RESULTS AND DISCUSSION
Geometry and Membrane Stresses

Selection of & dome of maximum efficiency for a given application may be
made to some extent on the basis of a membrane analysis. However, since the mem-~
brane solution for pseudoelliptical shells may be significantly in error
(ref. 5), this selection should be considered as preliminary only. A more com-
plete analysis based on the analytical methods described in this report and in
reference 8 may be used to modify this initial selection of dome parameters.
Figures 2(b) to (f) are presented, therefore, as a description of the membrane
Cassinian dome that is useful in preliminary design.

In general, three regions of the dome surface are of special interest: +the
apex reglon, the knuckle region, and the junction region. The knuckle region is
not always as clearly defined as that of the apex or junction. In this report,
the knuckle region is defined as that interior section of the dome in which the
circumferential stress may reach a minimum value. This region is of particular
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interest when this minimum stress 1s compressive, and buckling or high effective
stress may result.

Figure 2(b) presents data on the apex and junction regions. The nondimen-
sional radius of curvature at the apex may be determined from the desired mem-
brane effective stress in that region by the formula

[0}
L. &0 (6)
ap, P2
2h

It l/apo equals 1.732, membrane effective stress at the dome apex is equal to
that of a cylinder of equal thickness. The meridional curvature at the junction,

E%, is one of the factors influencing edge deflection and rotation of the shell

and can be determined approximately from the desired junction deflection by the
membrane formula

ap; = (2 - v) - uz (7)
ba_
2Eh

Lines of constant minimum membrane circumferential stress Og pin are in-

cluded in figure 2(c) to aid in determining whether or not buckling may occur in
the dome. The left and right segments of the curves indicate minimum membrane
stresses occurring in the knuckle region. These sections of the curves are ob-
tained by cross-plotting results from analyses of many domes because no formula
for them is available. The central segments show stresses that are minimum at
the junction. These membrane stresses may be calculated from the meridional cur-
vature at the junction by the formula

E‘ =1 - —2- ( 8 )
h

Substituting equation {3b) into (8) gives the relation between the membrane cir-

cumferential stress at the junction and the parameters m and n. Often, 99, min
and Je,o0 Bare the most important considerations in the preliminary selection of

a shallow dome. Figure 2(c) also shows the variation in dome height with m

and n.

Other observations concerning Cassinlan dome geometry and membrane stresses
may be made from equation (1) and figures 2(a), (b), and (c):

(1) If m = -0.333, the dome is flat at the apex for all values of n, and
apex stresses are theoretically infinite.

(2) In figure 2(a), the case with m = -0.190 and n = 1.167 1is shown.
This is the shallowest Cassinian dome with no membrane compression and with apex
effective stress less than or equal to that in a membrane cylinder of equal
thickness.



(3) If m = 0, the dome is ellipsoidal, and n equals the ratio of the ra-
dial semiaxis to the axlal semiaxis. For this case, if n = 1.0, the dome is
hemispherical. The ellipsoidal dome is the shallowest Cassinian dome for a given
value of apex curvature and the deepest Cassinian dome for a given value of junc=-
tion curvature.

In figure 2{a), the case with m =0 and n = 1.414 1is shown. This is the
shallowest ellipsoldal shape without membrane compression.

(4) If m = 1.0, meridional curvature at the junction is zero for all values
of n. These domes terminate in a section of a cylinder and have the largest
nondimensional membrane junction deflection TU/(pa2/2Eh). 1In figure 2(a), the
case with m=1.0 and n = 1.9 is illustrated. This is the shallowest of the
Cassinian domes with zero Jjunction curvature and no membrane compression. The
meridians with m = 1.0 and n = 1.0 and 3.0 are included to indicate the wide
variety of shapes possible.

(5) If n = 0, the Cassinian equations describe a cylinder for all values
of m.

When aP; and l/apO have been calculated using equations (6) and (7), m
may be determined without the nonlinear interpolation required in figure 2(b).
Using equations (3b) and (3c) gives

l-m 1+ 3m 2 2) =
T o %1 - m)% = (ap,)"(ap,) (9)

Figure Z(d) shows the variation in m with (apo)z(abé). Ambiguity 1s eliminated

by determining the sign of m from figure 2(b); n may then be calculated from
equation (3b) or (3c).

Figure 2(e) presents the variation in dome surface area and volume with m
and n. The derivation of the equations for these quantities 1s given in appen~
dix A.

Maximum membrane effective stresses, normalized with respect to the effec-
tive stress in a membrane cylinder, are given in figure 2(f). The reglons in
which these stresses occur are noted. It can be seen that, for most Cassinian
domes of interest, knuckle region stresses are important because of their influ-
ence on buckling rather than for thelr contribution to the maximum membrane .ef-
fective stress. In many applications, the dome stresses shown in this figure
plus the membrane stresses in the structure adjoining the dome will be modified
significantly by discontinuities.

In sumary, the following procedure may be used to determine preliminary
dome shape:

(l) For the given material, assume a dome wall thickness h.

(2) Calculate l/apO and aE% from the desired apex effective membrane



stress and Jjunction deflection, respectively, using equations (6) and (7).
(3) Select initial values for m and n, using figures 2(b) and (d).

(4) Using figure 2(c), check to see if this initial geometry satisfies pos-
sible requirements on 9¢,min and X,, and modify l/apo if necessary.

(5) Compute volume and weight of the total structure, using figure 2(e) for
dome calculations.

(6) Repeat steps (1) to (5) to determine other combinations of h, m, n, and
total structural weight. Select h for minimum weight.

(7) For complete stresses, perform detailed analysis using the described nu-
merical solution to the basic shell equations. Modify the wall thickness h as
necessary to remain within required maximum effective stress levels. Small
changes in h should not affect overall structural weight significantly.

Stresses in a Family of Cylinder Closures

Figures 3 to 7 present theoretical results for the family of domes with pa-
rameter m = 1. Since these domes are characterized by zero meridional curvature
at the Junction section, they are particularly suited for use as end closures on
cylinders of the same wall thickness.

The membrane stress distributions for these domes are given in figure 3,
normalized with regspect to the circumferential stress in a membrane cylinder.
The smoothness of the curves across the Junction section indicates the minimal
character of any discontinuity effects that may be present. The presence of com-
pressive stresses In domes with the larger values of parameter n causes an in-
crease in effective stress In the knuckle regions.

Figures 4(a) to (c) show the variation in maximm effective stresses in the
apex, knuckle, and junction regions with n and a/h for m = 1. In addition,
critical effective stresses are included in figure 4(d). Again, these stresses
are normallzed with respect to the effectlve stress in a membrane cylinder. The
results for a/h from 10 to about 30 should be considered as approximations in
light of the thin-shell assumptions of this analysis. Figure 4(c) shows that,
even though the meridional curvatures in dome and cylinder are equal at the junc-
tion, discontinuity effects are present, which indicates that meridional curva-
ture only at the junction does not determine free-edge deformations completely.

The variation in minimum circumferential stress with n and a/h is given
in figure 5. This information may be helpful in the design of ring stiffeners to
prevent wrinkling or buckling of the dome wall.

Figures 6 and 7 glve principal and effective stress distributions for domes
with m = 1.0, n = 1.9, and various values of a/h. These are the shallowest
Cassinian domes with zero junction curvature and no membrane compression. As in
figure 4(c), discontinuity stresses in the Jjunction region are noticeable, al-
though they decrease rapidly as a/h increases.



Experimental Results

A small cylinder with a Cassinian dome was contour-machined from a 6061-T6
aluminum billet. The nominal outer dlameter of the cylinder was 12.00 inches,
and the nominal wall thickness was 0.062 inch. The dome shape parameters were
m=1.0 and n = 1.9 (fig. 2(a)). Experimental results and curves of theoreti-
cal stresses are presented in figure 8 for this test specimen. Reasonable agree-
ment 1s obtained.

The test dome was selected because it combined zero junction curvature and
zero minimum membrane stress, which eliminates curvature discontinuity and buck-
ling. The shallowest ellipsoidal dome with no membrane compression has shape pa-
rameters m =90 and n = 1.414. This ellipsoidal dome is compared geometrically
with the test dome in figure 2{a). It can be seen that the two meridional curves
are similar in shape, although the depth of the test dome is larger than that of
the ellipsoidal dome. However, the test dome 1s nearly cylindrical for a portion -
of its depth, and interstage structures between propellant tanks with this type
of dome would probably not extend from cylinder to cylinder. Also, the volume of
the test dome is about 28 percent greater than that of the ellipsoidal dome. Ef-
fective stresses for the two domes are compared in figure 9, normalized with re-
spect to the membrane effective stress in the adjoining cylinders. The maximum
effective stress ratio arising from the ellipscidal dome is 1.076 against 1.017
for the cylinder with the zero junction curvature dome. Thus, the theoretical
yleld pressure for the cylinder with the test dome is about 6 percent higher than
that obtalned using the comparable ellipsoidal dome. There is also considerably
less bending in the knuckle region of the test dome, although apex stresses are
higher but not critical. Figures 8 and © are discussed in reference 10 also.

CONCLUSIONS

Geometric properties and elastic stress distributions for Cassinian domes
have been presented, and the following conclusions are drawn:

1. The Cassinian dome can be used to provide a family of cylinder closures
with a wide range of shapes and a minimum amount of discontinuity stress. In-
cluded in this range are hemlspherlcal and ellipsoidal domes.

2. Because the equation of the meridional curve of a Cassinian dome contains
two parameters, much flexibility in meeting design conditions is possible.

3. Although matching the membrane edge deflections of the dome and adjoining
structure reduces discontinuity effects considerably, bending moments and shears
may still be present because of the approximate character of the membrane anal-
ysis.

4, Maximum effective stresses occur at the dome apex or in the reglon of the
Junction of the dome and adjoining structure in the majority of dome shapes of
interest. Interior stresses are usually important only if they are compressive
and may lead to buckling.

10



5. Testing of a fabricated Cassinian dome shows good agreement between ex-
perimental and theoretical stresses.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, March 13, 1963
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APPENDIX A

CALCULATION QF SHELIL DATA
Station Coordinates and Curvatures

Since the basic differential equations (4) governing thin-shell deformations
are to be solved using an equal-interval finite-difference method, it is first
necessary to determine the coordinates of stations that divide the reference sur-
face meridian into equal increments of arc. Referring to figure 1 and equations
(1), (2a), and (2b) for z < x, gives

-~
- - _ _ L 2 _ .2 2 2 _ 2
Zs = X5 ~ X3 = X, nJma r§ +a ‘/a(l+m) 4mrs
(ﬁ%) = _<§§> - i 1+ 2ma.
dr/y /5 n(x, - z3) '/az(l +m)2 - 4mr§ > (A1)
- tan-1(%
$j = tan (dr)j
rj+l =T + Zao(Aé)cos wj ~
Also,
2 2 2] 2 2 2 )
rj=‘/-[n(xo-zj) +ma-+a Va(l+m) +4mn(xo-zj)
0 -
dr dr n(x, - ZJ) 2ma
dz /). = \a&x ). * T- L-
J J J Yai(1 + m)? + amnl(x, - 2,)2 - (2)
= cot-1{&
ij = cot (dz)j

To begin the calculation of coordinates, ry, 91, and r, are determined

from the boundary conditions on the meridian curve. Equations (Al) and (A2) are
then used to calculate the remaining coordinates. To avoid difficulties with
large values of dz/ dr and dr/ dz, equations (A2) are used when ¢ 1is larger
than 1{/4.. In practice, it is desirable to divide the shell meridian into inecre-
ments of length G,O(Aﬁ)/z and then to use the odd-numbered stations. This pro-
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cedure will avoid incremental lengths that are alternately slightly larger and
slightly smaller than a,(Af).

To calculate the curvatures of the reference surface, the following equa-
tions are used when 2z £ X451

b 1 = pp = p. = 1 (1 + Sm) )
€,21 770, L "o " oy T em Wt
Py 4 = (_@2) - - 000) J=2,3-1
£,3 ds /g 2a,(AE) g
> (A3)
L. or
s _-E P5-1
£, 20o(Af
sin @ _
O, .« = J =2,]
8,4 3 ’ J
When 1z > X4,
ZJ = ZJ 1 + Qo(Ag) )
I'j = 4
7T
= = A
5 =3 > (a4)
. =0
pg:J
1 s T, S
Po,5 = a J = J+1,3 J

Coefficients in the Basic Differential Equations

For a general shell of revolution, the coefficlents in equations (4) are
given in reference 7 as

13



> (45)

! 2 (I"D/G,O)'
°=- (?) TV T ey
Y= S
(r/Ca )l ! '
= - [ifcdi " ?]“%p@ * (rugpy)
z'r! '/ Ca )' 1
Tk M
r'(rv

In these equations,

14

r' o= @y cos @
r'" = -aopg sin @
z' = x, sin @
2" = aipg cos @



and

(rV) = ~ f T Py dg
4

For constant internal pressure,

2
(rv) = E%—
and
Py =P sin @

Therefore, for constant wall thickness, internal pressure, and material
properties, and with ag = a, equations (AS) reduce to equations (5).
Dome Surface Area
The dome surface area (fig. 1(a)) is

2 =i

Y As
S = K(T) +ZZﬂrj(As) + Bﬂr:],_(z + 6)
J=z

Now

ro =~ As = a(Ag)

and

Therefore,

a%z an(At) Z(%l) + 2 (a8) + H'ZET (a8)
J=c

This equation is used to compute the dome surface areas shown in figure 2(e).
Dome Volume
The volume enclosed by the reference surface of a Cassinian dome (fig. 1(a))

15



is

or
! 2
v x\.(r
-0 [ 666
0
2 2 2
B - o -+ o)
Therefore,
0] 0
2 2
i o &) <@
— = -nn (g) d(g) + 2nmn
a 2
"kl.+-m)2 + 4ngG§)
(xo/2)? (xo/2)?
Let
(1 +m?=q
4mn? = 8
%\ 2
g -
and
Xo 2
& -
Then
0 0
~ = -mn? S ar + i JL i (a7)
a9 A 2 H/af:‘g;
o] o

From reference 11 and egquation (3a), for B > 0, equation (A7) becomes
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. 2n?r3/2 = Yo + Bfr, + B/,
—= = 1 —— + |- ¢or, + BYg * in
3 3 2 | JE ~/op

or

3.0 1l +m

—-— - 2 =
v _n)J(l-m) -/1+2m (1 +m) 1p |t Sm 2 /(1 + 2n) for m >0
03 6 4~/m

=

(48)
Taking the limit of v/a3 as B approaches zero,
i%-: = for m =0 (A9)

For B < 0, eguation (A7) becomes

2n2Y§/2

2BY. + a
v 1 2 o4 1 Lo=1 0
—_— —_—— i =] - + —_ - —
3 T 3 > [ ‘/cwo + BT, e (2 sin - )]

or
-m) o & ém(1 + 2m)
l=£ (l m) l+2m+(l+m) cos-ll+8ml+2m) for m <O
a3 n 6 8-/ (1 + m)?

(A10)

Equations (A8), (AS), and (A10) are used to compute the dome volumes given in
figure 2(e).
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APPENDIX B

SOLUTION OF DIFFERENTIAT, EQUATIONS

At any station J on the middle surface meridian curve, equations (4) be-
come

rH ,.' P. rH !, } O. rH , A,}g‘ =

i

T4 TR+ 0.8, + VY (rH),
By TPy T 958 J( )J

In finite-difference form, using central differences and incremental length (Af),
- +
(rH)j+l Z(rH)j (rH)j_l
(ag)?

Substituting equations (B2) into (Bl), with j=1 and j = 3 at the bound~
aries, gives

(rH)j = s - e s (BZ)

N
(rH)J+l [1 + %f) Pj] + (rH)j [- o+ (A§)2®j] + (rH)j_l [1 - ff) Iﬁ]
+(a8)°n 6. = (a8)%,
- (B3)
B+ [1 + A;’) Tj:] + B [- 2 + (Ag)zﬁaj] + Bsoy [1 - -(%_J
+a0)Pyy(rm)y = (a8)%y 5 5= 2,3 -1

In matrix notation, with capital letters for 2 X 2 matrices and lower-case let-
ters for 2 X 1 matrices, equations (B3) become

Ay, +By +Fy. . =g, j =2, -1 B4
P By Eys ) =gy J =23 (B4)

in which

18



qTH)j

PR
(RE)"N 5

2
(28)%Ng

AE
+ .
1 A Tl

(a£)2h;

-2+ (Ag)20;

-

81,

82,5

Following the method of reference 8, let

then

and

Yi-1

Y3+l

= q. - P.y.
93 SRR

1l

= P(q.
= Py(ay

- YJ)

-1 = Fy-19;

Substituting equations (B6b) and (B6c) into (B4) gives

or

-1
AsF5 (e

- YJ) +

By * Fylay - Byavy)

822,43

bis 5

b22,5

22,

(B5)

(B6a)

(B6éb)

(B6c)

18



-1 1 ] g

As 1s shown later, Pj and qj are independent of the boundary conditions at

j =13, but vy is not. Therefore,
APt + B, -F.P. . =0
J7J J JrJ-1
and (B7)
j=2,-1

-1
AP+q. +F.q, . =g.
g% i%3-1 T &y

Solving equations (B7) for PJ and qj results in

= - . - -l -
Py =By - FsP; )7 Ay

ang (B3)
= ol - ] s 3 o= I -
45 = PJAJ (%j FJqJ_l), J 2,d 1
General boundary conditions may be expressed as
(rH)y =k - J11(xH)y - J12Bp

Jo1{rH)y - JooBsp

w
[l
il
b
0o
1

> (B9)
(lH)‘:’ = tl - I‘ll(rH)E-l - I'lzﬁ‘j’_l

™
[¢
Il
ct
N
1

I‘Zl(rH)S—l - 1'22[33_1)

Expressing equations (B9) in matrix form gives

y1 =k - Jy, (B10=.)
v =t - Ryv B10b
Vs V1 (B1Ob)
Comparing (BSa) and (Bl0a) yields
(B11)
q; = k

Using equations (BSb) and (BlOb) results in

R{ g+ - Py <) Ty =1
(a3.) = Pyvy) * 7y

20



or

-1
v = (I - RPy t - Ragx Blz
vy = (1 - 'Py )7t - Ray (m2)

1)
in which I equals the 2 X 2 identity matrix.

To expand equations (B6a), (B8), (Bll), and (Bl2) into algebraic form, let

P11,5 P12,;

P. =
J P P
21, 22,
and
q. .
1,3
qJ =
q. .
2y
Then
P11,1 = d11 7
Pip,1 = diz
Ppi,1 = Jo1
Paa,1 = Jz2
P1,5 = nge11,(Pez,y - f22, P22, 5-1)
Pip,5 = 2z, 5(P1z, 5 - f11,5P12,5-1)
Pz1,3 = “g11,5(b21,3 - faz,P21,5-1)
Paz, 3 = Tjaee,sltii,s - f11, P11, 3-1)
in which

(B13)

Y

- - - R -1
ng = Bbll,d £13,5P11,3-10(P2z, 5 - foz,5P22,3-1) - (b1p 5 - £11 yPrz, 5-2)(Pzy, g - fzz,jpzl,j-lﬂ

and
G, =¥
22,1 = K
Pag - 12,3 - .

Sl S LIRS C R FLREY

] 3d
P2l,j _ P2z, _ .

G2,5 = Ty 81,0 7 Tagt,ge) FE (B - fee e, )

>

J=2,3-1
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Finally,

\
(rH)y = “[(l " T21P12,3-1 - TezPzz,3-1)(f1 - T119 5.1 - T1292,3-1)
+ (r11P15,3-1 * T1gP2g,3-1)(%g - T2191 31 - rggqg)j_l)]
By = “[(1 - T10P11,3-1 - TiePe1,3-0(be - a9 31 - Terdp,3-1)
+ (rp1P17,3.1 = TogPpr,3-10(ty - T1191,3-1 - rlzqz,j-l)]
> 4
in which (B14)
Ho= [(l - T11P11,3-1 - r12P21,j-1)(1 - Tp1P12,3-1 - rggpgg)j_l)
_ NE
- (fllplz,j-l + rlZPZB,j-l)(rZIPll,j-l + TopPe1,3-1)
and
(rf)5 = aq 5 - i, (=W ga1 - Pz, sByn
By = A2,y = Par,gUrM g - Pep, Py I =0 - L1 )

To solve the shell equations:

(1) Calculate the elements of the A, B, F, g, J, k, R, and t matrices,
using equations (BS) and (B9).

(2) Calculate the elements of the P and q matrices, using equa- _
tions (Bl3) and traversing the shell meridian from station 1 to station j - 1.

(3) Calculate (rH) and B, using equations (Bl4) and traversing the shell
meridian from station J to station 1.

It can be seen that the boundary conditions at station 3 are not used

until step (3). Therefore, P and g are indeed independent of these boundary
conditions, as previously assumed.
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APPENDIX C

CATLCULATION OF STRESSES AND STRAINS

Referring to figure 1 and reference 7,

\
Ng =V sin @ + H cos ¢ = -pg J[ regpy ag + (TH) 29%:2
<
Ny = %}‘1)—* TPy
© > (c1)
D 1 r'
SRS )
D '
Me=§g(vﬁ +?B> J

In finite-difference form, for ag = a and for constant internal pressure, wall
thickness, and material properties, equations (C1) become

~
cos @
=2y, sin @, R §
Ng,5 =575 sin @5+ () Ty
Ny 5 = prs sin @ + 23 (rH)- - (rH)-
953 J 37 2a (L) g+l J-1
7 . - (cz)
€50 7 a, 2(AE) T, J
J
p| (Bs+1 - Bj-1) cos Py . <
¢ T= — -+ 0 = -
Mo, 3 g v 2(AE) %o T B J=23-1
- - o~
To calculate the stress resultants and couples at j =1 when 1rj = 0, the

following procedure is used:

Let W; represent the desired function and W_»

represent the function at the station a distance (As) from the apex along a me-

ridian 180° from the nominal meridian.
closed shell,

Since the functions (CZ) are even for a
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and
Wi =0

Selecting the appropriate numerical differentiation formula from reference 12 for

the first derivative of a function that is known at four points results in

| =BW_g = 3Wp + CWp - Wy

W, = - o arars 0
1 o(At)

Therefore, for a closed dome,

[OM I

4
wl-‘-"é‘wZ- WS

Other boundary conditions may be handled in & similar manner.

To calculate stresses and strains, the following formulas are used:

\
N M
. :'—iiG-—i
Ug is h

}{d-'} h
Qi3

Ng MG

. = -t § —

G@,{is} h © Le
0s

(c3)

(c4)



10.

1.

12.

REFERENCES

. Johns, Robert H., and Orange, Thomas W. Theoretical Elastic Stress Distri-

butions Arising from Discontinuities and Edge Loads in Several Shell-Type
Structures. NASA TR R-103, 1961.

. Fligge, W.: Stress Problems in Pressurized Cabins. NACA TN 2612, 1832Z.
. Fligge, W.: Stresses in Shells. Springer-Verlag (Berlin), 1960.

. Read, W. S.: Cassinian Domes for Pressure Vessel Design. Paper 62-Av-5,

ASME, 1962.

. Galletly, G. D.: Edge Influence Coefficients for Toroidal Shells of Positive

Gaussian Curvature. Paper 59-Pet-2, ASME, 1959.

. Galletly, G. D.: Bending of 2:1 and 3:1 Open-Crown Ellipsocldal Shells.

Bull. Ser. 54, Welding Res. Council, 1959.

. Reissner, Eric: On the Theory of Thin Elastic Shells. Reissner Anniversary

Vol., Edwards Bros., Inc., 1959.

. Radkowski, P. P., Davis, R. M., and Bolduc, M. R.: Numerical Analysis of

Equations of Thin Shells of Revolution. ARS Jour., vol. 3z, no. 1, Jan.
1962, pp. 36-41.

. Wilson, P. E., and Spier, E. E.: Numerical Analysis of Small Finite Axisym-

metric Deformation of Thin Shells of Revolution. ERR-AN-153, General
Dynamics/Astronautics, 1962.

Johns, Robert H., Morgan, William C., and Spera, David A, Theoretical and
Experimental Analys1s of Several Typlcul Junctions in Space Vehicle Struc-
tures. Paper 2427-62, Am. Rocket Soc., Inc., 1962.

Dwight, Herbert Bristol: Tables of Integrals and Other Mathematical Data.
Third ed., The Macmillan Co., 1957, p. 44.

Bickley, W. G.: Formulae for Numerical Differentiation. The Math. Gazette,
vol. 25, no. 263, Feb. 1941, p. 192.



Boundary

[0, wpa—— v omo—————

26

J=3
Cylinder
A
¥
leenl- - - a
o - - - _ *_ __dJunction
I Meridional curvature = E§/‘¥ Ti=73
o)
]
Dome
1
Knuckle
*o

X

i

\j"‘ 1
Uncdeformed middle surface —
1
u

bt — - - —- - r -:I

\ /. —Deformed middle
surface

z ¥
i |t CP - ﬁ

“-Curvature = Py

1

Apex

=1

(a) Meridional geometry.
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Nondimensional radial coordinate, v/a
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- Variation of Cassinian dome properties with parameters
.




‘u pue w sJogoweded UYlTM seTgaadoad SwoOp UBTULSSE) JO UOTIBTJIBA "PenUTIU0) -~ g 24n3Td
-xode 4® 2J4N3BAJIND JO SNIPBI PUB ‘SS53JI3€ 2AT409JJ9 sueaquew xode ‘uorjoun) e asanieadn) (q)

w ‘aagqaweaed UBTUTISER)
01 8" 9’ 7 =5 C 2 -

29

° T 7 _
JaputTip Suop
ve S_ 0 TepTosdTTTE

TeoTaauds Tway

i _ swop
T
|
|

| o]

.

\

NN

fJ1oqameaed UBRTUTSSED

u

o*s
t D

‘xade 3® 2J4n3BAJIND JO

o
L de .o A: mavm

AN

= SNTPBI J0 SS3J48 9ATA09J
-J9 dUBJIQUWAW TRUOTSUIWUIPUON

‘goTgounf{ 9w
5IN4BAIND TRUOTSUSWTPUON
| | 1 | |




Cassinian parameter, n
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Figure 2. - Continued.

Cagsinian parameter, m

{c) Dome height and minimum membrane stress.

Variation of Cassinian dome properties with parameters m and n.




Cassinian parameter, m

N

Ellipsoidal dome —
AN

Y

\
\//

] _/,/
//
/
0 .2 L4 .6 .8 1.0
Nondimensional curvature constant, (apo)c(aﬁg)
(a) Curvature constant (apO)Z(aﬁé).
Figure 2. - Continued. Variation of Cassinian dome properties

with parameters

m and n.
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Figure 3. - Concluded. Membrane stresses in Cassinian domes with zero
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